Benha University
$2^{\text {nd }}$ Term (May 2013) Lab Exam
Class: $4^{\text {th }}$ Year Students
Subject: Computer Vision

Faculty of Computers \& Informatics
Date:21/5/2011
Time: 1 hours
Version: B

Answer the following questions:

A- We learn how to detect corners using Sum of squared differences. Using Matlab do the following steps:

1- Read Image.
2- Compute the gradient components in X and Y directions.
3- Compute the products of the gradients at each pixel.
4- Sum the result's over the window size.
5- Compute Matrix A.
6- Compute Score.

B - The following is a binary image.

	1	1			1			1	
	1				1			1	
1		1	1	1	1	1	1		1
1						1	1		
1		1	1	1					
1		1		1					
1		1		1					
1		1	1	1					
1									
1	1	1	1	1	1	1	1		

(a) Label the connected components using Matlab assuming 4-neighbor connectivity.
(b) Label the connected components using Matlab assuming 8 -neighbor connectivity.

C- Using Matlab:

Coins.png
Segment coins from the background, by generate a binary image where white (1) are coins, and black (0) elsewhere.
-No gaps in the coins.
-No extraneous white pixels in the background.

